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Introduction
Most tumors are heterogeneous, comprising multiple types of tumor 

cells (Turner & Kohandel, 2012). Cancer stem cells (CSCs) are one such 
type that are closely related to poor patient outcomes, including tumor 
growth, resistance, metastasis, and recurrence, making them an impor-
tant and attractive target of study and treatment.

CSCs are a class of tumor cells able to perpetually self-renew and 
differentiate into other types of cancer cells. While CSCs typically make 
up under 10% of cells in a tumor, they exhibit fast and aggressive growth. 
Moreover, CSCs are resistant to traditional therapies like chemotherapy 
or radiotherapy. Therefore, immunotherapy, where the patient’s own 
immune system is used to target tumor cells in a highly specific man-
ner, has gained prominence as a treatment. Because of the specificity 
of this treatment, immunotherapy can even be used to directly target 
CSCs (Wu et al., 2023).

While the interactions of different types of cancer cells, immunother-
apy, and traditional therapeutic methods like chemotherapy have been 
extensively studied experimentally, mathematical models are needed to 
better understand why certain treatments fail and how to improve cancer 
treatment. Previous work modeling the interactions between cancer and 
immune cells treat tumors as a homogeneous population, overlooking the 
significant differences between CSCs and non-CSCs (nCSCs, which have 
less or no capacity for self renewal or differentiation)  (Robertson-Tessi 
et al., 2012; Wilkie & Hahnfeldt, 2013). More recent models distinguish 
between CSCs and nCSCs (Goldman et al., 2015) and consider their 
interactions with chemotherapy and the immune system (Mpekris et al., 
2017, 2020). However, few address the combined effects of chemotherapy 
and immunotherapy in a comprehensive framework. Since CSCs play a 

significant role in driving tumor progression, developing a model that 
considers the interactions between CSCs, nCSCs, and immune cells 
under chemotherapy and immunotherapy is crucial for advancing our 
understanding of cancer treatment.

In a 2019 paper by Sigal et al. entitled “Mathematical Modeling of 
Cancer Stem Cell-Targeted Immunotherapy,” the authors used 7 ordinary 
differential equations (ODEs) to model the effects of using immuno-
therapy and chemotherapy alone or in combination on tumors arising 
from CSCs and nCSCs. Using this model, they tried to seek the best 
treatment plan.

The authors chose two parts of the immune system involved in prom-
ising immunotherapy treatments: dendritic cells (DCs) and cytotoxic 
T-cells (CTCs) (Sigal et al., 2019). These cells are a critical component of 
antitumor response, with DCs taking up cancer antigens and presenting 
them to CTCs so they can recognize and kill tumors (Jhunjhunwala et 
al., 2021). 

In treatments involving these cells, immature DCs are taken from a 
patient and activated with tumor antigens to make them present antigens 
specific to CSCs (which express antigens similar to normal stem cells) or 
nCSCs (Galassi et al., 2021). These mature DCs were then reintroduced 
into the patient to interact with and activate naive CTCs to target cancer 
cells that exhibit the same antigen. However, as a consequence, mature 
DCs presenting antigens can also be targeted and killed by activated 
CTCs (Ma et al., 2012). While there are mechanisms protecting mature 
DCs from such attacks, Sigal et al. (2019) make the simplifying assump-
tions that activated CTCs will only target mature DCs and tumor cells 
with the same type of antigen, and choose not to account for these pro-
tecting mechanisms.
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Based on these factors, Sigal et al. (2019) created a system of 
7 ODEs (Equation 1) modeling the effects of the above immuno-
therapy treatments and chemotherapy. The system modeled the 
populations of CSCs, nCSCs, activated CSC-specific CTCs, activated 
nCSC-specific CTCs, mature CSC-specific DCs, and mature nCSC-
specific DCs. These dependent variables were denoted as S, P, TS, 
TP, DS, and DP, respectively. C was used to denote the concentration 
of chemotherapeutic agents:

				    (1)

Descriptions of the parameters and possible values can be found 
in Table 1.

Using their model, the authors reproduced data from several 
experiments, including from Luo et al. (2014) and Ning et al. 
(2012), to ensure that the model accurately represented tumor 
growth for tumors with and without CSCs. They then simulated 
the efficacy of immunotherapy and chemotherapy when used 
alone and together.

In this report, I will detail my replications of the model’s simula-
tions using Mathematica to confirm that the model is reproducible 
and accurately portrays CSC and nCSC growth and response to dif-
ferent treatments. I will then explain my modification of the model 
by introducing a Gompertz term to better reflect the long-term 

tumor dynamics, where tumor growth slows as it approaches a 
carrying capacity. Finally, I will explore how the addition of this 
Gompertz term impacts the model’s simulations of immunother-
apy’s efficacy.

Breakdown of the Model
Tumor Cells

Sigal et al. (2019) mainly focused on graphing the differential 
equations (DEs) for S and P, which model CSC and nCSC popula-
tions, to analyze the tumor size and how it is impacted by treatments. 
Despite the drastic differences between CSCs and nCSCs, there are 
mechanisms by which they can differentiate into each other. These 
are captured by the 2 DEs:

      (1.1)

CSCs can undergo three different types of cell division: 
symmetric, asymmetric, and interconversion. Symmetric divi-
sion happens 10-45% of the time. A CSC forms 2 new CSCs at 
a rate captured by  (a daughter cell replaces the parent cell, 
resulting in the exponential first term of ). Asymmetric 
division, where 1 CSC and 1 nCSC are formed, occurs 55-80% 
of the time. In the model, this occurs at a rate of  (this only 
appears in the DE for P as  because the CSC population is 
conserved). Interconversion, where a CSC forms 2 nCSCs, hap-
pens in 0-10% of CSCs at rate  (corresponding with  
and  in the S and P DEs).

Depending on their characteristics, nCSCs can also undergo 
replication at a rate of  (resulting in the exponential  
term in ) or dedifferentiate back into a CSC at rate . The 
value of  is chosen to keep the CSC population within a 
reasonable range, ensuring CSCs make up under 10% of the 
total tumor cells. This dedifferentiation process is represented 
by  in  (the CSCs formed) and  in  (the nCSCs 
that differentiated).

The  and β  terms model cancer cell death by 
CTCs, which occurs when CSCs and nCSCs come in contact 
with an activated CTC that targets them (denoted by TS and 
TP). Meanwhile, the  and  terms model killing by 
chemotherapy when CSCs and nCSCs encounter chemothera-
peutic agents (denoted by C). There are distinct parameters for 
CSC and nCSC death because CSCs are far more resistant to 
chemotherapy.

Finally, there is a term modeling natural death for all the 
tumor cell, dendritic cell, and cytotoxic T-cell ODEs. Each is 
modeled by an exponential decay term with a  parameter 
specific to the cell type I. However, because of CSC’s ability to 
proliferate indefinitely, this term can sometimes be removed 
entirely from the equation for S.

Cytotoxic T-Cells
The DEs for activated CSC-specific and nCSC-specific CTCs 

(TS and TP) have 2 terms:

			                  (1.2)

Table 1. Parameter descriptions and possible values based on Table 2 in Sigal 
et al. (2019). These biologically relevant ranges for each of parameter were 
derived using experimental data from other studies (Luo et al., 2014; Ning et 
al., 2012) and values in other models of cancer and immune cell growth and 
interactions (Gao et al., 2012; Turner & Kohandel, 2012).
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The first term represents naive CTC activation by mature DCs. 
At high concentrations of DCs, this becomes saturated and reaches 
the value of parameter or  (the saturated activation 
rate of CTCs multiplied by the population of CSC- or nCSC-specific 
naive CTCs). The other term represents the natural death rate of 
activated CTCs. 

Dendritic Cells
Meanwhile, the DEs for mature DCs specific to CSCs or nCSCs 

(DS and DP) involve 3 terms and describe how mDCs are produced 
and the two ways in which they can die:

		                 (1.3)

The first term shows how naive DCs (whose population is rep-
resented by the constant D) mature when encountering a tumor 
cell. The second term represents mDC death by activated CTCs 
because of the antigens that the mDCs are presenting. The last 
term represents natural death.

Chemotherapeutics
Finally, the DE modeling chemotherapeutic agents (C) has a 

single term modeling the clearance of these drugs from the body:

					                    (1.4)

Simulations
To validate the model, I began by replicating simulations Sigal et 

al. performed using data from two experimental studies (Luo et al., 
2014; Ning et al., 2012). These studies involved injecting mice with 
CSCs and nCSCs, as well as giving them immunotherapy targeting 
either CSCs, nCSCs, both cell types, or providing no treatment.

I first reproduced the authors’ simulation of experimental data of CSC 
and nCSC tumor growth from experimental data in Ning et al. (2012) 
(Fig. 1). In the experiment, varying amounts of CSCs and nCSCs were 
isolated and injected into opposite sides of the same immunocompetent 
mouse. The size of the tumors that resulted (which had both CSCs and 
nCSCs because of their ability to convert into each other) were monitored 
over time. Both studies found that the tumors started with CSCs grew 
much quicker and more aggressively than ones originating from nCSCs, 
and Sigal et al.’s models were able to capture that.

To replicate the authors’ model, I focused on the DEs for S and 
P. I added S and P together to get the total tumor size in units of 
mm3 (assuming there are 105 tumor cells per mm3, as Sigal et al. 
did). In the graphs, day 0 corresponds with when the tumor cells 
took root and induced a tumor in the mouse models.

I started by modeling the growth of a tumor without treatment 
by varying the initial CSC and nCSC populations and setting the 
population of CTCs, DCs, and chemotherapeutic agents to 0. I first 
reproduced modeling of tumor size after inoculation with 50,000 
CSCs or nCSCs (Fig. 1a). I used host-specific parameters (which 
depend on the tumor microenvironment and cancer type in each 
individual host):  = 0.5,  = 0.2,  = 0.25,   = 0.2,  = 0.15, 

 = 1.8, and  = 0.00053. These values were selected based on 
the ones used in Fig 2 of Sigal et al. (2019) and the possible ranges 
for parameters, which can be found, along with their units, in Table 
1. I also modeled tumor size with initial populations of 5,000, 

Figure 1. Tumor growth over time with different initial populations of CSCs 
and nCSCs, with day 0 corresponding to when tumors took root and started 
growing. (a) Initial population of 50,000 CSCs or nCSCs. (b) Initial population of 
5,000, 10,000, and 20,000 CSCs or nCSCs. Initial populations in this simulation 
were selected to compare with (b-ii) mean tumor size measured experimentally 
in Figure 2b in Ning et al. (2012) with initial population of 2,000, 20,000, and 
200,000 CSCs or nCSCs, plot from Figure 2cii in Sigal et al. (2019).

10,000, and 20,000 CSCs or nCSCs with   = 0.51,  = 0.2,  = 
0.24,   = 0.2,  = 0.15,  = 1.6, and  = 0.00018 (Fig. 1b).

This simulation successfully captured how CSCs grow far more 
aggressively than nCSCs, with just 5,000 CSCs being sufficient to form 
a tumor of substantial size over t = 50 days (Fig. 1b). Furthermore, this 
simulation showed that varying the size of the initial nCSC population 
(even with a tenfold increase) doesn’t create a significant difference in 
the size of the resulting tumor (Fig. 1a, 1b). However, while the experi-
mental data in Figure 1b-ii shows tumor growth slowing as it is limited 
by nutrient availability and reaches a carrying capacity, even in tumors 
starting with far more CSCs, the simulated tumor populations in Figure 
1b continue to grow exponentially.

Next, I reproduced a model of tumor size after treatments with DCs or 
CTCs using in vivo experimental data from Figure 4 in Ning et al. (2012) 
(Fig. 2). Mice were injected with a combination of CSCs and nCSCs and 
received either immunotherapy targeting CSCs, nCSCs, both cell types 
(mixed treatment), or no treatment at all. Most of the DCs and CTCs 
were applied over multiple inoculations before the tumor cells took root 
in the mice (modeled as day 0), with the treatment schedule shown in 
Figure 2a. I simulated the DC and CTC populations prior to day 0 and 
used those results as the initial conditions in the system of 7 DEs.

I started by modeling treatment with DCs (Fig. 2b). In the experi-
ment, 3X106 DCs were applied to a mouse over three injections that 
occurred 22, 15, and 8 days prior to day 0, when a tumor with 10% CSCs 
and 105 total cells took root. For the treatments that targeted CSCs and 
nCSCs, all of the DCs were either CSC- or nCSC-specific. For the mixed 
treatment, 10% of the DCs were CSC-specific, and the rest targeted 
nCSCs, corresponding with the composition of the initial tumor cell 
population. I used parameters  = 0.7,  = 0.1,  = 0.2,   = 0.2,  
= 0.2,  = 3.2, and  = 0 based on the values Sigal et al. (2019) selected.

For CTCs, I modeled how a total of 3x106 CTCs were applied 7 days 
before, the day of, and 7 days after a tumor with 105 cells (5% CSCs) took 
root (Fig. 2c). Much like with the DCs, treatment consisted of CSC-
specific CTCs, nCSC-specific CTCs, or a mix of both (with 5% targeting 
CSCs). I used parameters  = 0.71,  = 0.2,  = 0.3,   = 0.2,  = 
0.24,  = 2.8, and  = 0.00013. 
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In Figure 2, this model captures the performance of these 
different treatment regimens relative to each other and to no 
treatment. The simulation also confirms that immunotherapy 
targeting CSCs is more effective than treatments targeting 
nCSCs or both cell types. However, the solution curves mod-
eling tumor growth rates grew far more aggressively than the 
experimental data, which displays clear sigmoidal growth, with 
tumor growth slowing and beginning to approach a carrying 
capacity 20 days after the tumors took root (Fig. 2b-ii, 2c-ii). 
As a result, Equation 1 failed to model the long-term behavior 
of the tumors because it assumes tumors obey Malthusian, or 
simple exponential growth. 

Model Modifications
Knowing that tumor growth in vivo is limited by oxygen and 

nutrient availability, making Malthusian growth unrealistic, I 
decided to modify the equations for S and P so it can simulate 
tumors with sigmoidal growth and approaching a carrying capac-
ity. However, the model needed to identify a carrying capacity 
using the initial tumor population, cell growth rates, and death 
rates. To account for tumors’ slowing growth as they near a carry-
ing capacity, I replaced the exponential Malthusian growth terms 
with Gompertz terms, which better capture long-term tumor 
dynamics and allow the sigmoidal growth to approach a carry-
ing capacity without explicitly setting its value. This flexibility is 
particularly useful for modeling tumor growth.

I selected a Gompertz term to replace the Malthusian terms 
modeling cell division (  and ) and natural death (  
and ) and got a modified system of the 7 ODEs:

				    (2)

The Gompertz terms for S and P,  and , 
incorporate tumor cell growth and death rates, as well as the 
initial population of each type of cancer cell, and are derived from 
Tier (2003) and (Norton, 1988). The new parameter  is defined 
as follows for cells of type I (S or P):

					                    (2.1)

Here, I0 is a positive, nonzero value that represents the initial 
population of S or P. The definitions of parameters , , , and 

 remain the same. 
Since Sigal et al. only provided values for the rate of natural 

increase, or  and , I selected a maximum tumor 
size of 500-700 mm3 to fit the carrying capacity observed in 
the empirical data from Ning et al. (2012). This upper limit is 
based on experimental data and represents an empirical 
assumption. Keeping all other parameter values constant with 
the Malthusian version of each simulation, I varied , , , 
and  within their biologically relevant ranges to select the 
optimal values for reproducing experimental data while ensur-
ing the tumor populations approached the observed carrying 
capacity.

Results
I first used my modified system of ODEs to model tumor growth 

in the absence of any treatments. I also tried to identify whether 
the percentage of CSCs making up a tumor creates a significant 
difference in its growth or whether it can reach the same carrying 
capacity. Since initial conditions for both CSCs and nCSCs must 
be greater than 0, I modeled the growth of 1%, 5%, and 10% CSC 
tumors originating from 50,000 cancer cells over t = 150 days (Fig. 
3). I used host-specific parameters   = 0.33,  = 0.075,  = 0.03,  

 = 0.025,  = 0.15,  = 1.8, and  = 0.00053. 
These simulated tumors exhibit Gompertzian growth, 

starting with exponential growth that then f latten out as they 
begin to approach an equilibrium of 550 mm3 at their carry-
ing capacity at around t = 120 days. This matches the trend of 
the experimental data, especially over longer periods of time. 
Despite the different percentages of CSCs making up the three 
tumors, they exhibit similar growth before nearing the carry-
ing capacity at about the same time.

Figure 2. Tumor growth over time after various applications of DCs or 
CTCs targeting CSCs, nCSCs, both cell types (mixed treatment), or no 
treatment at all. (a) Timeline of treatment with immunotherapy and tumor 
cells. (b) A tumor with 10% CSCs treated with various applications of DCs. 
Simulation values selected to compare with (b-ii) mean tumor size measured 
experimentally in Figure 4d in Ning et al. (2012), plot from Figure 3b-ii in Sigal 
et al. (2019). (c) A tumor with 5% CSCs treated with various applications of 
CTCs. Simulation values selected to compare with (c-ii) mean tumor size 
measured experimentally in Figure 4c in Ning et al. (2012), plot from Figure 
3c-ii in Sigal et al. (2019).
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Figure 3. Tumor growth over time using a Gompertz model with an initial 
population of 50,000 tumor cells, with 1%, 5%, and 10% being CSCs.

Figure 4. Tumor growth over time after various applications of DCs or CTCs 
targeting CSCs, nCSCs, both cell types, or no treatment using a Gompertz 
model. (a) A tumor with 10% CSCs treated with various applications of DCs. 
(b) A tumor with 5% CSCs treated with various CTC applications.

I then modeled tumor growth after treatment with DCs and 
CTCs using this modified system of ODEs to identify whether 
Gompertzian growth impacts the efficacy of immunotherapy. 
Parameters , , and , which model the rate of transitions 
between CSCs and nCSCs, were kept constant for DCs and CTCs 
from their counterparts in Figures 2b and 2c. I identified param-
eters  = 0.675,  = 0.075,  = 0.04, and   = 0.04 to model 
treatment with DCs in Figure 4a and  = 0.67,  = 0.06,  = 
0.16,  and  = 0.06 to model the use of CTCs in Figure 4b. Using 
the same dosage and initial conditions as I detailed in Figure 2a, 
I obtained the solution curves shown in Figure 4:

chemotherapy, serving as an improvement upon Sigal et al.’s 
model of exponential tumor growth. This modified model is 
valuable because it recognizes that there are limits to tumor 
growth in vivo because of the finite amount of resources avail-
able and can simulate sigmoidal growth, with tumor growth 
slowing as the tumor reaches an equilibrium at its carrying 
capacity. This allows the solution curves in the model to exhibit 
much more realistic long-term growth. Moreover, if the growth 
and natural death rates of CSCs and nCSCs, along with the 
values of the other host-specific variables governing the con-
versions between CSCs and nCSCs are known, this model can 
predict the eventual size of the tumor.

There are a few improvements that could be made to this 
model. While the model simulated most of the equilibrium 
values that the tumors in the experimental data approached 
after receiving immunotherapy or no treatment, there are a 
few discrepancies. For example, tumor growth in mice receiv-
ing CSC-specific immunotherapy was significantly lower in 
the experimental data than what the model predicts. This can 
in part be attributed to a difference in the number of tumor 
cells injected into the mouse and how many actually took root. 
Of course, tuning specific parameter values, such as , which 
governs the death rate of CSCs in response to CTCs (and DCs, 
by extension), could improve the model. This is especially 
because Sigal et al. set  and  equal in their model (Table 
1), assuming that CTCs are equally effective at killing CSCs 
and nCSCs, contrary to what the experimental data suggests. 
Additionally, the model currently makes the simplifying 
assumptions that activated CTCs will only target mature DCs 
and tumor cells with the same type of antigen, and chooses 
not to account for mechanisms protecting mature DCs from 
such attacks. Modifying the model to consider these could be 
another point of future studies.

Moreover, it took the modified model two to three times as 
long to approach equilibrium values: solution curves took about 
50 days after tumors took root to do so while the tumors in the 
experimental data did so in about 15 to 25 days. This difference 
could be attributed to a need to further tune parameter values 
and could be a point of future studies. 

Currently, this model is unable to simulate initial tumor 
populations where either CSCs or nCSCs are 0. However, most 
tumors are heterogeneous and include both CSC and nCSC 
populations. CSCs typically make up under 10% of a tumor 
and can differentiate into other cell types, making it unlikely 
for a tumor to be entirely composed of CSCs. Moreover, tumors 
composed entirely of nCSCs do not grow aggressively enough to 
reach a carrying capacity on the relatively short timescale of a 
few weeks to a few months that I modeled, as seen in Figure 1. 
This makes the case where a tumor is initially entirely CSCs or 
nCSCs and needs to be simulated using Gompertzian growth 
unlikely. However, extending the model to simulate this case 
is another important and interesting point of future study.

This modified model has the potential to provide valuable 
insights into the potential efficacy of cancer treatments. By 
incorporating host-specific parameters and tumor composition, 
it can simulate the long-term behavior of tumors. Additionally, 
modeling interactions between cancer cells, immunotherapy, 
and chemotherapeutic agents may provide insights into the 
optimal timing and efficacy of treatments.

Figure 4 shows how the improved system of ODEs qualitatively 
captures the relative efficacy of the various treatments, compar-
ing each treatment to one another as well as to the no-treatment 
control. Once again, immunotherapy targeting CSCs performs 
the best. The curves all show sigmoid Gompertzian growth and 
flatten out at about t = 50 days at different values, matching with 
the experimental data (Fig. 2b-ii, 2c-ii) and showing more realistic 
tumor growth than the original model’s simulations (Equation 1) 
(Fig. 2b, 2c). However, if treatment is not  continued, the modified 
model predicts that all of these solution curves will eventually 
converge at a carrying capacity of about 800 mm3 (the value the 
no treatment curves are currently at).

Discussion
In summary, this report presents a modified system of 

7 ODEs that models Gompertzian tumor growth and the 
effects of immunotherapy when used alone and together with 
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