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Introduction
The Centers for Disease Control and Prevention (CDC) reported 

that 50,000 people are diagnosed with tick-borne diseases (TBDs) 
in the United States each year, including Lyme Disease (LD; Marx 
et al., 2021). However, underreporting discovered by Kugeler et al. 
(2021) suggests that the real incidence rate is much higher, closer to 
~500,000. Due to underdiagnosis and asymptomatic clinical mani-
festations (Madison-Antenucci et al., 2020; Lantos et al., 2020), the 
scope of this public health threat is difficult to assess (Welc-Falęciak 
et al., 2023). Moreover, in recent decades, the number of cases has 
doubled, in part due to climate change (Campbell-Lendrum et al., 
2023).

Ticks are ectoparasites and their range and tick-borne pathogens 
are increasing worldwide, with warmer winters in certain regions 
(Odgen et al., 2021; Kilpatrick et al., 2017) leading to phenological 
changes (MacDonald et al., 2019; Newman et al., 2018). While LD 
caused by Borrelia burgdorferi sensu stricto (Burgdorfer et al., 1982) 
remains one of the most prevalent tick-borne pathogens in North 
America, Europe, and Asia (Kugeler et al., 2015; Grochowska et al., 
2020), other diseases have emerged and become pervasive in recent 
decades (Eisen et al., 2017). Madison-Antenucci et al. (2020) reports 
that the foci of endemicity or new locations of ticks is expanding 
and so are the pathogens and bacteria being transmitted which 
vary greatly by species.

The Eastern blacklegged tick (Ixodes scapularis) is one of the 
most clinically important ticks in the United States and abroad due 
to its transmission of diverse pathogens (Tokarz et al., 2019), such 
as Anaplasma phagocytophilum (anaplasmosis), Babesia microti 

(babesiosis), Borrelia miyamotoi (hard tick relapsing fever), Bor-
relia mayonii (LD), and Ehrlichia muris eauclairensis (ehrlichiosis; 
Eisen & Eisen, 2018). Other important ixodid vectors include the 
Asian Longhorned tick (Haemaphysalis longicornis; Egizi et al., 
2020), Brown dog tick (Rhipicephalus sanguineus; Little et al., 2022), 
American dog tick (Dermacentor variabilis, D. similis; Newman 
et al., 2018), Eastern blacklegged tick (I. scapularis; Eisen et al., 
2018), Lone star tick (Amblyomma americanum; Thangamani et al., 
2023), Gulf Coast tick (A. maculatum; Paddock & Goddard, 2015), 
Groundhog tick (I. cookei; Ferreira et al., 2023), Western blacklegged 
tick (I. pacificus; MacDonald et al., 2019), Rocky Mountain wood 
tick (D. andersoni; Ebel et al., 2023), and soft tick (Ornithodoros; 
Chitimia-Dobler et al., 2023). These species have been associated 
with certain TBDs, including B. mayonii (transmitted by the I. 
scapularis / pacificus), B. miyamotoi (I. scapularis / pacificus), tick-
borne encephalitis (TBE), Crimean-Congo hemorrhagic fever (R. 
sanguineus), human granulocytic anaplasmosis (HGA) caused by 
Anaplasma phagocytophilum (I. scapularis / pacificus), babesiosis (I. 
scapularis / pacificus), human monocytic ehrlichiosis (A. america-
num, D. variabilis), severe fever with thrombocytopenia (SFTS; H. 
longicornis), Heartland virus disease (A. americanum), E. ewingii 
infection (A. americanum), Powassan encephalitis (I. scapularis 
/ cookei), and Bourbon virus disease (A. americanum; Madison-
Antenucci et al., 2020). Tick exposure and bites are also associated 
with other diseases and co-infections (Lantos et al., 2020), such 
as Rocky Mountain Spotted Fever (RMSF; Dahlgren et al., 2017), 
Southern Tick-Associated Rash Illness (STARI; Belisle et al., 2017), 
Alpha-Gal Syndrome (AGS; Karim, et al., 2019), a red-meat allergy 
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associated with bites from the Lone star tick (A. americanum), Gulf 
Coast tick (A. maculatum), American dog tick (D. variabilis, D. 
similis), and Eastern blacklegged tick (I. scapularis), among other 
TBDs (Madison-Antenucci et al., 2020). The Asian longhorned tick 
(H. longicornis), indigenous to Asia (Beard et al., 2018), has recently 
been associated with the transmission of thrombocytopenia syn-
drome (SFTS) and viral hemorrhagic fevers (VHFs; Luo et al., 2015), 
Rickettsia japonica [Japanese spotted fever (JSF); Mahara, 1997], 
Anaplasma, Babesia, Borrelia, Ehrlichia, and Rickettsia (Beard et 
al., 2018).

Despite existing antibiotic treatments, diseases such as LD can 
become chronic if not treated immediately (Eisen et al., 2017). 
Moreover, LD affects more than two million people in the U.S. 
(DeLong et al., 2019), with many cases remaining undiagnosed due 
to atypical clinical manifestations or the absence of an otherwise 
characteristic “erythema migrans” skin rash (Nathavitharana & 
Mitty, 2015). Moreover, the economic burden of TBDs and LD is 
significant – estimated between $345 million and $968 million 
per year – with an average of $1,200 per treatment, and with later 
stages of disease development being more costly (Hook et al., 2022). 
Thus, there is a need for diagnostic capabilities to be improved, 
and machine learning-based approaches may offer potential solu-
tions (Rich et al., 2022; Akbarian et al., 2021; Omodior et al., 2021; 
Sanchez-Galan et al., 2023).

The pathogens and diseases transmitted are dependent upon 
both the tick species and the geographical location of the tick; there-
fore, the classification of the tick species is critical to formulating 
an accurate diagnosis (Otranto et al., 2012). Traditional diagnostic 
methods have used tick species classification to inform whether a 
person is at risk of contracting a TBD, primarily LD (Nieto et al., 
2018). However, there is no direct correlation between a certain 
species of tick and the TBD that the species carries, since the risk 
factors vary greatly for both tick lifecycle and geographic location 
(James et al., 2006; Madison-Antenucci et al., 2020). Clinical studies 
of patients presenting with a tick bite in Lyme-endemic areas have 
shown that the prevalence of LD in all species of ticks fluctuates, 
including the notorious biting arachnid Eastern blacklegged tick 
(I. scapularis). Moreover, Poland et al., (2001) concluded that the 
abundance of host-seeking infected ticks is not linearly correlated 
with the probability of disease transmission of the LD spirochete 
Borrelia burgdorferi sensu stricto (Eisen et al., 2016). Rather the 
proportion of ticks infected with B. burgdorferi s.s. informed the 
risk of human LD infection (Hinckley et al. 2016). With this degree 
of uncertainty, it is necessary to couple real-time identification with 
location-specific incidence rate data. Connecting these datasets in 
one platform is beneficial, since the general public and healthcare 
professionals alike find tick recognition challenging due to the large 
number of different species known and intra-species variability 
(Madison-Antenucci et al., 2020). Thus, morphological identification 
of tick species is imperative for accurate TBD risk assessment (Nieto 
et al., 2018). Moreover, some ticks are often difficult to identify using 
only morphological traits because of the allopatric nature of certain 
species (Chilton et al., 2013), and thus the geographic location of 
the ticks can inform the probability of species (Riggs et al., 2015).

Correct identification requires in-depth entomological train-
ing due to feature-wise minute differences that are difficult for the 
general public to identify (Nieto et al., 2018). Computer vision-based 
approaches to tick identification have been successful, with Rich 
et al. (2022) creating a convolutional neural network (CNN) that 

can accurately identify the American dog tick (D. variabilis, D. 
similis), Eastern blacklegged tick (I. scapularis), and the Lone star 
tick (A. americanum) with 99.5% accuracy on a given test dataset 
when transfer learning is used. Other deep learning algorithms 
feature the three major human-biting tick species (Akbarian et al., 
2021; Omodior et al., 2021) with the highest reported accuracy of 
93% (Sanchez-Galan et al., 2023). These machine learning-based 
approaches can proficiently classify images as noted in multiple 
studies where deep learning models were implemented for insect 
identification (Rich et al., 2022).

Given that human experts are the limiting factor for diagnostic 
capacity in this field as well as the pressing health concerns over 
TBDs worldwide, deep learning-based models hold promise for 
the instantaneous assessment of TBD risks based on specimen 
determination and prevalence analytics.

Materials and Methods
Project Overview

The goal of this project was to create a machine learning-based 
mobile application that could be used to identify the species of a 
tick and provide disease risk analysis based on the location of the 
user. The three most pathogenic ticks are the Eastern blacklegged 
tick (I. scapularis), Lone star tick (A. americanum), and American 
dog tick (D. variabilis, D. similis) and were thus used in previous 
versions of this study. After fine-tuning the model and adjusting 
the hyperparameters, ten species in total were identified: American 
dog tick (D. variabilis, D. similis), Asian longhorned tick (H. longi-
cornis), Brown dog tick (R. sanguineus), Eastern blacklegged tick 
(I. scapularis), Western blacklegged tick (I. pacificus), Groundhog 
tick (I. cookei), Gulf Coast tick (A. maculatum), Lone star tick (A. 
americanum), Rocky Mountain wood tick (D. andersoni), and soft 
tick (Ornithodoros; Fig. 1).

For the first iteration of the system, a learning model that could 
accurately identify the aforementioned three most disease-produc-
ing tick species was created. Inception v3 (a CNN) was used in a 
previous version of the app, reaching an accuracy of 80%; however, 
after closer examination, the model was overfitting and misclas-
sifying ticks and non-ticks. Thus, a different CNN, Xception, was 

Figure 1. A taxonomic representation of the ten species used for tick 
identification. Photos of the American dog tick (D. variabilis, D. similis), Asian 
longhorned tick (H. longicornis), Brown dog tick (R. sanguineus), Eastern 
blacklegged tick (I. scapularis), Western blacklegged tick (I. pacificus), Groundhog 
tick (I. cookei), Gulf Coast tick (A. maculatum), Lone star tick (A. americanum), 
Rocky Mountain wood tick (D. andersoni), and soft tick (Ornithodoros) are 
featured.
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Model Architecture and Selection
For the task of tick image classification, a CNN was chosen 

(Rich et al., 2022). The architecture of the model, however, would 
be crucial to the performance, so different CNNs were tested and 
compared for different iterations and number of species detected 
as well as their computational efficiency and ability to generalize.

The models tested were ResNet50V2, ResNet152V2 (an improve-
ment of ResNet50), and Xception. ResNet50V2, from the ResNet 
architecture (He et al., 2016), has a 50-layer deep architecture that 
is able to identify shortcut connections to improve gradient flow 
and ease of training. It is often pre-trained on large datasets to 
employ transfer learning, allowing it to be suitable for complexity 
and performance. ResNet152V2 is more complex than ResNet50V2 
with a 152-layer deep architecture. It is also often used for transfer 
learning due to its pre-trained weights. Xception, or “Dense Extreme 
Inception,” builds on the Inception architecture and replaces tra-
ditional convolutions with depth-wise separable convolutions for 
better feature extraction (Chollet, 2017).

Each model was trained for 10 epochs or periods of time, and 
the performances were compared (Fig. 3-5). ResNet50V2 ended 
with a loss of 0.2225 (Fig. 3A) and accuracy of 0.922 (Fig. 3B). The 
model performed well across the loss and accuracy metrics, how-
ever, the high testing and validation accuracy indicated the model 
was overfitting on the training and validation datasets, while not 
performing well on the test dataset. ResNet152V2 ended with a loss 
of 0.3125 (Fig. 4A) and an accuracy of 0.844 (Fig. 4B). Similar to 
ResNet50V2, the training and validation sets displayed high accu-
racy, the test set did not perform well. Last, Xception was tested, 
ending with a loss of 0.2708 (Fig. 5A) and accuracy of 0.8937 (Fig. 
5B). Unlike the other models tested, Xception performed well and 
was not overfitting as seen in the consistency of the training, vali-
dation, and testing accuracy metrics. The dotted line, denoting the 
testing accuracy, was around the training and validation accuracy 
(Fig. 5B), while the other models’ training and validation accura-
cies were well above the dotted line (Fig. 3B, 4B).

chosen to detect whether a tick was present or not as well as deter-
mine the species of tick. After fine-tuning the subsequent version 
of the model that could identify ten species, a risk assessment was 
created based on the CDC’s U.S. tick-borne surveillance data. For 
user accessibility, an iOS mobile application with other useful fea-
tures was deployed onto the Apple App Store.

Validation, Testing, Dataset Preparation, and Data Preprocessing
For the three-species-model, a dataset was curated. To collect 

the image sets, web scrapers were utilized to collect photos of each 
class of ticks from readily available datasets on Google Images, 
iNaturalist, and other image platforms. Manual cleaning of noise 
and removing photos of mislabeled species was implemented to 
ensure the dataset used was morphologically correct (Fig. 1). Most 
images were also from databases that genetically confirmed their 
species classification using molecular assays (Luo et al., 2022). 
Images were then cropped and resized to 500 ppx to prevent 
object (tick) occlusion. The cleaned dataset included 3,123 photos: 
776 “non-ticks,” 743 American dog ticks, 807 Eastern blacklegged 
ticks, and 797 Lone star ticks. Each class equally represented 25% 
of the set, and model weights were adjusted accordingly to balance 
the set.

After the three-species model was built, the training, 
validation, and testing datasets were built for the ten-species 
neural network. This dataset featured 709 “non-ticks,” 579 
American dog ticks, 849 Blacklegged ticks, 809 Lone Star ticks, 
409 Brown Dog ticks, 612 Rocky Mountain ticks, 644 Gulf Coast 
ticks, 683 Asian longhorned ticks, 780 Groundhog ticks, and 312 
soft ticks (Fig. 1). Of note, the Eastern and Western blacklegged 
tick were combined into one class, because the features were too 
similar for a neural network to differentiate, and hence a heuristic 
algorithm was applied which will be discussed later. For classes 
such as soft ticks where there was a lack of available photos, the 
class weights were adjusted to compensate for imbalance and 
impact during the training process.

The data pipeline for both iterations was comparable. To 
prevent data leakage between classes, a two-step dataset split 
process was performed. The first split divided the dataset into 
training, validation, and testing subsets. The second split, 
exclusively applies data augmentation to the training set and 
splits the rest of the dataset into training, validation, and 
testing. Following the data preprocessing and pre-cropping to 
500 ppx, data augmentation was implemented to increase the 
data variability by creating three copies of all the photos each 
with different orientations. The testing set was isolated from the 
training pipeline to safeguard against data contamination and 
biased model performance evaluation. By presenting the testing 
data, or the “unseen” and new data, to the model, the unbiased 
performance could be evaluated.

Ticks are very small ranging from 3-5 mm; therefore, their vary-
ing appearances are difficult to detect by the human eye as well as 
for some neural networks (Rich et al., 2022). The Xception model is 
known for its ability to pick up small features (Chollet, 2017), how-
ever, small ticks were originally a challenging task. To overcome this 
problem, tiny black squares were placed on the data set to generate 
noise and enable the model to pay closer attention to minor feature 
changes, such as color, distinctive dots and shapes, and tick shape 
(Fig. 2). After applying the black dots, the model showed an ability 
to generalize, which was later used for the ten ticks.

Figure 2. Sample selection of photos of female and male I. scapularis, A. 
americanum, D. variabilis, D. similis, and a “Non-tick” class that were used for 
training with the “Black Dot” method. Black dots were used to induce noise and 
allow model generalization.

Figure 3. Model performance of ResNet50V2. A) Train, Validation, and Test 
loss metrics. B) Train, Validation, and Test accuracy metrics. The dotted line 
is the test accuracy (B), which indicates overfitting due to the high train and 
validation accuracy and lower test accuracy.
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Thus, Xception was the appropriate architecture for the tick clas-
sification CNN due to its feature extraction and depth, as seen in the 
model parameters (Table 1). The CNN consisted of multiple layers, 
pooling, and fully connected layers designed for the challenging 
task of identifying minute differences for tick species identification.

While the Xception model worked well for three species, 
the architecture had to be reevaluated for the implementation 
of ten-species classification. The same networks ResNet152V2 
(Fig. 6A), Xception (Fig. 6B), and ResNet50V2 (Fig. 7B) were 
tested and evaluated with the addition of MobileNetV2 (Fig. 
7A), a lightweight architecture often used in mobile applications 
(Howard et al., 2017). It is resource-efficient in constrained 
environments, which is less relevant in this study since high 
accuracy is prioritized. Both ResNet152V2 and Xception are 
computationally intensive and have similar results (Fig. 6A-B) 
as ResNet50V2 (Fig. 7B). ResNet50v2, an improved version 
of ResNet50 (He et al., 2016), balances efficiency and perfor-
mance with architectural features, pre-activation, bottleneck 
structures, and pre-trained weights that make it effective for 
feature extraction and stable training. It consistently outper-
formed the other models in terms of its validation accuracy 

and loss (Fig. 7B). Thus, ResNet50V2 was chosen (Table 2), 
as highlighted in Figure 7B, for the task of identifying the ten 
species due to its robust initial performance and potential for 
future facile fine-tuning. 

Model Finetuning
After Xception was chosen for the three ticks, 13 hyperparameters, 

such as batch size, learning rate, and dropout rate, were adjusted to 
fine-tune the model in order to reach peak performance and create a 
robust learner, preventing the model from overfitting (Table 1). Similar 
hyperparameter optimization was implemented for the ten species 
with ResNet50V2 (Table 2) since Xception was no longer suitable as 
more species were added. For the ten species, the model adjustments 
took ~19 hours to train and ended with a validation accuracy of 97.2%.

The “Window Algorithm”
While the validation accuracy, after running the model with 

the test dataset, was relatively high, a collection of real-world 

Table 1. Xception model architecture and parameters for identification of 
three species.

Figure 6. Model performance of ResNet152V2 and Xception. A) ResNet152V2 
Train, Validation, and Test loss metrics. B) Xception Train, Validation, and Test 
accuracy metrics.

Figure 7. Model performance of MobileNetV2 and ResNet50V2. A) MobileNetV2 
Train, Validation, and Test loss metrics of MobileNet. B) ResNet50V2 Train, 
Validation, and Test accuracy metrics. 

Table 2. ResNet50V2 Model Architecture and Parameters For Identification of 
Three Species.

Figure 4. Model performance of ResNet152V2. A) Train, Validation, and Test loss 
metrics. B) Train, Validation, and Test accuracy metrics. Similar to ResNet50V2, 
the dotted line is the test accuracy (B), which indicates overfitting due to the 
high train and validation accuracy and lower test accuracy.

Figure 5.  Model performance of Xception. A) Train, Validation, and Test loss 
metrics. B) Train, Validation, and Test accuracy metrics. Unlike the ResNets, 
Xception was not overfitting, which can be seen as the three train, validation, 
and test accuracy metrics are consistent.
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tick photos that the model would newly encounter yielded only 
an accuracy of 46%. The testing data were structurally differ-
ent from the training and validation sets because they often 
featured occluded tick images and other realistic yet sometimes 
unusual user-generated photo scenarios. Most of the issues were 
related to the model detecting “non-tick” when, in fact, there 
was a tick present. To overcome this, the “window algorithm,” 
was designed and implemented. The window algorithm con-
tinuously cropped the photo until over 95% confidence was 
reached by the model with regard to the species classification 
or whether a tick was present. If the model reached 95% con-
fidence on a species, then the predicted class was presented to 
maintain computational efficiency. If the model reported over 
95% confidence that there was no tick present, the window 
algorithm would also be run.

In Figure 8, the model was given a photo of a zoomed-out 
tick, which was a Lone star tick by its true label. When the 
zoomed-out photo was tested, the model predicted “non-tick” 
with 0.9999323 confidence (Fig. 8A). After running the window 
algorithm once, the model once again predicted “non-tick” 
with 0.9998989 confidence (Fig. 8B). The second time, the 
CNN predicted a “Lone star tick” with 0.7222055 confidence 
(Fig. 8C). While the model eventually predicted the true class, 
72% confidence was too low to report to users. Thus, the algo-
rithm was run again, and the CNN predicted “Lone star tick” 
with 0.998703 confidence (Fig. 8D). This demonstrated the 
network’s ability to use real-world examples despite the small 
size challenge of ticks. If the model does not reach 0.95 con-
fidence that there is a tick in the photo, the user will receive a 
“tick not found” notification, which allows them to re-center 
the tick for optimal results.

Location-Based Heuristic Algorithm Approach
While the window algorithm significantly improved the 

model performance for three types of ticks, as more species 
were added, the neural network misclassified certain types, 
such as the Eastern and Western blacklegged ticks, whose 
inter-species differences are highly refined. However, their 
geographic ranges are different. While all blacklegged ticks 
are morphologically similar feature-wise, it is rare to find an 
Eastern blacklegged tick in California or a Western blacklegged 
tick in Connecticut (Nieto et al., 2018). Utilizing the CDC’s 
tick surveillance data by state, the probability of a certain tick 
found in a given geographic region could be ascertained. When 
the user takes a photo of a tick with the app, their geographic 
coordinates will be assigned to a respective state (or country 
if outside the U.S.).

Figure 8. Novel Window Algorithm implementation. A) A zoomed-out photo 
was given to the model with a tiny tick surrounded by a noisy background. 
B) Model zoomed in. C) Model cropped again. D) Final cropped image that 
allowed for more than 95% confidence that a tick was present and the species 
was correct.

Tick-Borne Disease Risk Assessment
Information for the spatiotemporal risk assessment was 

used from the CDC’s Tickborne Pathogen Surveillance data. 
The CDC’s dataset displayed the prevalence of the following 
vectors in the U.S. by species: LD, Tularemia, Spotted Fever 
Rickettsiosis (SFR), Anaplasmosis, Ehrlichia chaffeensis, E. 
ewingii, babesiosis, Powassan encephalitis, hard tick relapsing 
fever, Bourbon virus disease, and Southern Tick-Associated 
Rash Illness (STARI).

Of note, because of the COVID-19 pandemic (Boyce et al., 
2023), some of the TBD datasets only go back to 2019; and due 
to lack of available data and privacy issues, the risk assessment 
currently works only in the U.S. and South America. The ticks 
most documented by the CDC are the Lone star tick, American 
dog tick, and the Eastern blacklegged tick. The CDC’s National 
Notifiable Diseases Surveillance System (NNDSS) releases a 
dataset including pathogen prevalence by geography and dis-
plays the annual incidence of diseases in the U.S.. For example, 
the I. scapularis set reports the following pathogens: Borrelia 
burgdorferi sensu stricto (responsible for LD), B. mayonii, B. 
miyamotoi, Anaplasma phagocytophilum, E. muris eauclairen-
sis (EME), Babesia microti, and the Powassan (POW) virus. 
Furthermore, due to the lack of information available in some 
areas, location-based weighting was applied to the CDC data-
set based on population size and the proportion of infected 
individuals from tick bites to predict the risk of infection if a 
user in a given region is bitten. Moreover, since there is some 
known underreporting of cases, tick risk analysis must take 
into account that actual risks may inevitably be higher or lower, 
respectively.

For easier public use, a gradient scale from “low level” to “high 
level” of danger was implemented (Fig. 9E). However, a user of the 
app can also view the full risk breakdown of the pathogen preva-
lence by selecting “view risks,” which displays more risk details 
associated with notifiable TBDs. Prior to taking the photo of the 
tick, the user fills out a form that provides ground information for 
their risk assessment. In the form, the user is asked if the tick has 
bitten someone or an animal and later asks if the tick was engorged 
or enlarged when found (Fig. 9C). The risk will only be considered 
“high level” if a tick bite was reported.

Figure 9. DETICKT IT UI / UX Schematic. A) The DETICKT IT homescreen where 
users can see ticks that they have identified. B) The camera feature to take the 
photo of the tick. C) After users take the photo, they will be prompted to fill 
out the risk background form which will further inform the risk assessment. 
D) If the user selects that they still have a tick attached, a tutorial on how to 
remove a tick based on CDC guidance will appear. E) After prior steps, the user 
will receive the tick species as determined, their potential risk of a tick-borne 
infection, and more information about the tick.
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iOS Application User Interface (UI) / User Experience (UX) 
Design and Features

DETICKT IT was originally developed in Xcode with Swift 
within a service-oriented architecture. After the CNN model (Figure 
7B) was ported from a local environment to Amazon Web Services 
(AWS), open application programming interfaces (APIs) were cre-
ated for functions, such as specimen identification, location finder, 
and risk assessment. Using this approach, DETICKT IT is able to 
scale through AWS Lambda functions, thereby delivering results 
to the app’s users in mere seconds. The code was later migrated to 
Flutter because it serves as a codebase for both iOS and Android 
– with a view toward eventually increasing availability to Android 
users as well.

DETICKT IT has an active “tick-bite” data pipeline, which allows 
users who have been bitten or are interested in the definitive iden-
tification of a tick they have found to upload their images (Figure 
9). There are other features, such as a “Learn More” (Figure 9E), 
where users can learn about other ticks and track their symptoms 
after a tick bite. Figure 9 outlines the prominent features of the 
mobile application.

Results
Model Performance Metrics

The model was first evaluated for three species and later 
for ten. After using the Xception CNN and implementing the win-
dow algorithm, an accuracy of 97% was reached for the three most 
prevalent ticks. After optimization with the ResNet50V2 model, 
the accuracy for ten ticks was also 97%. Prior to implementing 
the window algorithm, the confusion matrices, which display the 
model’s performance in terms of true labels versus the predicted 
label (Fig. 10), indicate few false positives and false negatives in both 
the validation and the test sets. However, it is important to evaluate 
the model with unfamiliar datasets containing images that feature 
partially occluded ticks and other real-world scenarios (including 
less-than-ideal photographic settings). This was a challenge for the 
model and resulted in only 46% accuracy, but the novel window 
algorithm provided a feasible approach to dealing with realistic, 
user-produced images. 

After applying the window algorithm for N = ~45 in each 
class, there were only very minor classification errors (Fig. 
11). Of note, the errors occurred when the model reported 
that there was no tick present when in fact there was. This 

indicates that the model was not confusing the species, but 
rather having difficulty locating the tick in the photo. There-
fore, after refining the window algorithm, the accuracy of the 
model was increased to 97%. In one notable instance, during 
preprocessing, an image was misclassified by human error but 
was correctly identified by the model, another display of the 
CNN’s ability to generalize.

F1, accuracy, recall, and precision scores were calculated 
for the three ticks (Table 3). These ref lect the model’s perfor-
mance and ability to generalize. The eventual model ended 
up performing overall with 0.98 precision, 0.97 recall, and 
0.97 F1 score.

The three-species model worked well as seen in the confu-
sion matrices (Fig. 11), so gradually more species were added 
until classification of ten species was reached. In Figure 12, 
confusion matrices for six ticks are shown. The classification 
report indicated that the network struggled with classifying 
the Rocky Mountain wood tick with only 0.47 precision. The 
CNN’s overall performance had 84% accuracy after the addition 
of three new types of ticks. Due to the morphological similari-
ties between the Rocky Mountain wood tick, the American dog 
tick, and the Gulf Coast tick, the aforementioned location-based 
heuristic algorithm was applied. This greatly increased the 
model’s accuracy to 93% (Fig. 12B). Figure 12B is the confu-
sion matrix post-algorithm utilization with fewer classification 
errors committed.

Figure 10. Test and validation confusion matrices prior to implementing 
the Window Algorithm. A) Validation and B) Test Confusion Matrices. The 
implementation of the window algorithm decreased the errors of the model 
due to feature-based classification.

Figure 11. Confusion matrix after implementing the Window Algorithm. 
Minimal errors are occurring, as seen in the distribution. The model was not 
confusing species but rather could not always detect a tick in a photo.due to 
feature-based classification.

Figure 12. Confusion matrices for six ticks with Window Algorithm pre- and 
post-Location Heuristic Feature. A) Confusion matrix without the location 
feature. B) Confusion matrix post-location feature algorithm applied, greatly 
improving the performance of the model.due to feature-based classification.
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Discussion
The performance metrics indicate that the neural network can 

suitably generalize and classify ticks at a relatively more accurate 
(97%) and certainly faster rate than the general public (Nieto et 
al., 2018). The gradual expansion to ten species allowed for the 
meticulous optimization and refinement of the CNN architecture. 
Moreover, the implementation of the location-based heuristic and 
novel window algorithms represents an innovative approach to 
achieving real-world applicability and scalability. The window 
algorithm can also be applied to other problems, such as medi-
cal imaging (Müller et al., 2021) or computer vision tasks where 
minute object features are difficult to detect or discern.

While a machine learning-based approach to tick identifica-
tion has been explored, this novel mobile app can identify the 
ten most common and disease-causing species and predict the 
risk posed by each tick (by connecting to the CDC’s tick-borne 
disease prevalence database). Based on the literature, this is the 
first implementation of a machine learning-based app that can 
identify ticks with high (97%) accuracy as well as provide a quali-
fied assessment of the potential risk of infection.

There are current limitations with the availability of data in 
regard to tick photos and tick-borne disease surveillance databases. 
Due to the lack of available data, transfer learning was also utilized 
to compensate for any data disparities. Future versions of the app 
include expanding the geographic regions to other countries (data 
availability permitting) to provide this service more globally to 
tick bite victims.

One of the most challenging aspects of tick species classifica-
tion is the minute appearance differences between species. While 
97% is relatively high and due to the model’s reported perfor-
mance, which is indicative that the network isn’t overfitting, there 
is still uncertainty with the quality of user-produced images. Since 
this mobile device- and user-centric approach is highly dependent 
on the quality of the photos received, during training and testing, 
real-world scenarios of occluded, relatively blurry, and zoomed-
out photos of ticks were used, yet these approaches still may not 
have accounted for all user-produced errors. 

The risk of tick-borne diseases varies by stage of the tick and 
sex (Eisen et al., 2016); therefore, a viable computer vision-led 
approach to determining disease risk must be able to account for 
these differences. With certain species, the male ticks look distinct 
from their female counterparts – visual differences an ML model 
can learn to distinguish. In future iterations, the model would 
incorporate training a female and male class for each species, 
whereas at present no delineation is made between male and female 
species during training. Once again, accurate photographic data 
availability / accessibility remains a significant issue for further 
improving overall performance with the incorporation of this 
new feature.

This mobile app has the potential to significantly outperform 
medical professionals’ reported ability to accurately classify ticks 
(Nieto et al., 2018). Moreover, the embedded tick risk assessment 
feature allows users to gain awareness of the risks associated with 
a given tick (bite) in a certain geographic area and in real time. 
The knowledge and confidence gained will facilitate diagnostic 
accuracy and shorten critical time-to-treatment, enabling affected 
individuals to seek medical attention. DETICKT IT is currently 
available on Apple’s App Store and is free, with ~3,000 downloads 
(as of 09/01/24).

After 93% accuracy was achieved and the location-based algo-
rithm was used as well as after changing the model to ResNet50V2, 
the ten-species model was tested. While adding these three spe-
cies, the Asian longhorned tick, the Groundhog tick, and the soft 
tick, they all had distinct features which were not challenging for 
the model to identify. Figure 13 displays the validation and test 
confusion matrices for the ten species. There is a very minimal 
error rate for both matrices, which is indicative of the model’s high 
performance (Fig. 13).

After using random photos not contained in the training set 
as well as applying both the window and location algorithm, the 
confusion matrix in Figure 14 was produced. There are not many 
classification errors, and the remaining challenges relate to inter-
species similarities. Overall, the model for ten species ultimately 
reached an accuracy of 97%, precision of 96%, recall of 97%, and F1 
score of 96%. After applying these innovative algorithms in concert, 
the accuracy of this latest model is exhibiting real-world viability.

Figure 13. Confusion matrices after implementing the Window Algorithm. 
Minimal errors occurred, as seen in the distribution. A) Validation confusion 
matrix. B) Test confusion matrix.

Table 3. Performance Metrics of Both Models: Precision, Recall, and F1 Scores.

Figure 14. Confusion matrix for ten species and “non-tick” control class after 
implementing the Window Algorithm and Location-Based Heuristic Algorithm. 
Minimal errors are seen in the distribution with a relatively high true positive rate.
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